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Abstrad Fluctuations of onler parameters Q near a hicritical point coupled with strain 
e ( a  e& lead to fluctuation-induced first-order phase transitions. Anisotropic fluctualions 
with strong conelations along a ‘hard’ direction show a much reduced first-order behaviour. In 
the case of improper h e l a s t i c s  the fluctuation-related renormalizations become immeasurably 
small and a classic !icri!ical behaviour is expected 

Experimental observations of such fluctuations an: faciliated if the fluctuating order parameter 
couples biquadratically with a xmnd, non-critical ider parameter which is used as aacer. The 
fluctuation-induced renormalintion of the tracer onler parameter is calculated. 

1. Introduction 

The theory of fluctuation correc.tions to Landau theory with elastic degrees of freedom 
predicts fist-order phase transitions in solids for a great number of physical scenarios [ 1- 
61. In case of the margins of the applicability of Landau theory, elastic coupling of the 
type AeQz (where e is the strain, Q is the order parameter and A is a coupling constant 
(e.g. in improper ferroelastic transitions) [7]) leads to stepwise transitions for short-range 
interactions for d = 4 and dipolar interactions for d = 3 but continuous transitions are 
possible for higher dimensions [8,9]. Under pinned boundary conditions, for uniaxial 
dipolar systems of hexagonal and trigonal symmetry second-order transitions were predicted, 
whereas a stepwise behaviour is expected for other symmetries (unless the transition occurs 
at a uniaxial Lifshia point) [lo]. Experimentally, it appears that the first-order step of 
the transition can he smaller than the experimental resolution. The term ‘weakly first- 
order’ or ‘almost second-order’ transition is often employed to describe a situation where 
all experimental evidence shows a continuous phase transition although theory tells us that 
a small discontinuity should or could exist. Note, however, that in the case of a proper 
ferroelastic transition with coupling of the type AeQ the continuous transition is always 
possible and this is, indeed, what is often observed experimentally [71. For a review of the 
experimental situation see [ l l .  121. 

Whereas the first-order nature of improper fmoelastics and related materials may often 
justifiably be ignored, this is not the case for another marginal condition. Levanyuk et al 
[ I ]  have shown that (nearly) tricritical systems with linearquadratic strain coupling (i.e. 
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AeQz) also become first-order when the fluctuations are properly accounted for. The origin 
of the first-order effect is not just the classic renormalization of the coefficients in the 
Landau potential (which depends on their initial values) but relates to the appearance of a 
fluctuation-induced third-order term cx [el3. In isotropic systems this term can be large and 
will always generate a first-order transition independent of the original form of the Landau 
potential (as long as the system is close to a hicritical point). 

The advantage in focusing on tricritical systems is not only that such systems are 
surprisingly widespread amongst improper femelastic materials [7] but also that it is 
possible to treat the fluctuations in perturbation theory [l]. In fact, our perturbation theory 
is applicable only if the renormalized coefficient of the fourth-order term in the Landau 
potential of the homogeneous part of the order parameter is small compared with the 
equivalent coefficient of the inhomogeneous contribution to the free energy. This condition 
is not met in a case of an ordinary second-order phase transition. We will argue that the 
second condition for our approach is that for a phase transition close to (but not at) a 
tricritical point the shear modulus p does not vanish. 

Although the approach in [l] seems to describe the situation of the stepwise transition 
in W C I  [13] (and possibly quartz [14,13) correctly, it is at variance with observations 
in improper ferroelastics. Tricritical behaviour (or very closely so) is observed in the 
Pb3(F'O&-Pb3(VO& system [16-19], in GMO [20], and other systems 17.21-241. We also 
find continuous transitions close to the tricritical point in co-elastic materials such as CaCO, 
and NaN03 (always within experimental resolution) 12.5-281. We show in this paper that 
these observations can be explained if the anisotropic nature of fluctuations in these materials 
is included in the theory. We find that all fluctuation-induced effects scale as the inverse 
correlation volume and can be quite small for improper ferroelastic phase transitions. 

The second question relates to the possibility of observing the fluctuations experimen- 
tally. Two main obstacles seem to exist. Firstly, it is always difficult in real materials to 
distinguish between intrinsic fluctuation effects and those generated by defects. Secondly, 
order parameter fluctuations above the transition point (as observed spectroscopically or 
via specific heat measurements) have to be subtracted from an (often ill-defined) baseline 
signal (see [7] for review). This latter problem may be overcome in the following situation. 
Let a material display two (or more) transitions. Two order parameters will then couple, 
most commonly as Q:Q$ This coupling is compatible with all symmetry constraints [7]. 
Near the lower transition temperature the second-order parameter is non-zero. Its value will 
be modified by the first-order parameter and its fluctuations. It is possible, therefore, to 
investigate fluctuations of the critical order parameter via the tracer of a non-critical order 
parameter. We will show that these effects should be experimentally observable. 
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2. Anisotropic order parameter Uuctuations and the first-order nature of the phase 
transition 

The effective Hamiltonian bas the form of the usual Landau potential. Following closely 
the nomenclature in [ l ]  we write 

4(Qt U) = / [ ( P ( Q )  +(P(Q, d l d v  (1) 

with 

p(Q) = 4AQ' + : B e 4  + $Q6 + fDo(VQ):, + fDi (VQf:  

otQ, U) = r Q 2 w  + $Kv:,  + ~ ( Y X  - f ~ d i r ) ~  

(2) 

(3) 
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where Q is the order parameter, Ujl:  is the strain tensor and r is the coupling constant. The 
Gmburg energy coefficient D is anisotropic with Dll along the unique direction (e.g. the 
direction of the intersection of ferroelastic twin planes) and DI in the plane perpendicular to 
the unique direction. Strictly speaking, we should also consider the elastic energy to be fully 
anisotropic. This effect would probably enhance the reduction of the fluctuations which we 
wish to describe and does not lead to a fundamentally different physical picture. We abstain 
from a full treatment of the anisotropy of the elastic constants in this paper because it leads 
to unnecessarily complicated expressions for the free energy without contributing much to 
our physical understanding. Some aspects of the effect of anisotropic elastic behaviour have 
previously been discussed in [lo]; here we restrict ourselves to the most simple approach. 
Integrating out the elastic degrees of freedom leads to the renormalized uniform expression 
of the free energy FO which st i l l  has the usual Landau form with k = B - 2 r Z / K .  The 
non-uniform part, on the other band, becomes 

with Bl = B - $ r Z / K  - $rz/A and A = K + $p. The applicability of our approach 
is constrained by the condition [l] ~ / B I  < 213. Note that this condition is violated for 
r = 0 (no strain coupling) or p = 0 (vanishing shear modulus). The expression (4) is for 
Dll = DI identical with the result in [l] (their equation (8)). In the case of an (almost) 
tricritical phase transition we find the fourth-order term in FO to disappear (E = 0). The 
equivalent term in Fh is B1 which is always greater than k due to the elastic interaction, i.e. 
B, > 0. We now evaluate the free energy expression of $I related to Fh. Within perturbation 
theory one finds 

A$I = -T log 1 exp (-$) II, dQk. (5) 

Here we made use of the Gaussian character of the fluctuations (as an essential 
approximation). 

Replacing the summation by an integration leads to 

where k, is the relevant zone boundary wavevector and 

U =  ( A + 3 B 1 Q i + S C Q i ) / k i .  (7) 

Two limiting cases can he obtained without further calculations. In case of Dll = DI = D, 
we recover the result for the isotropic behaviour: 

(8 )  
(Y 

A 4  12z [3” D -re D +constant for - D << 1. 1 VT 
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The term linear in w renormalizes the Landau potential by changing the transition 
temperahue without modifications to the form of the Landau potential. The term 
proportional to w3l2 is the origin of the first-order step discussed by Levanyuk et al. For 
(Y a Qi this term leads to a fluctuation-induced thud-order term lQ0l3 which is not part of 
the original static Landau potential. Our result is, of course, identical to that in [ 11. 

Let us now consider the other extreme case, namely the most anisotropic fluctuations 
such as we would expect to occur in improper ferroelastics. In this case we consider, as 
the mildest effect, Dll + CO, whereas DL remains finite: 
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The w-dependent part of this expression becomes zero for Dl, + 00, so no fluctuation 
corrections occur in this case. The most relevant last term disappears as the inverse 
correlation volume 

(my 
showing that any large correlations will annihilate the fluctuation corrections. The crux of 
the matter is that one direction is sufficient for the suppression of the fluctuation correction 
altogether. 

For intermediate cases, it is easy to show that the power-law expansion of A+ remains 
as 

with E* = - z m .  The values of A' and C* depend on the regime DI < 2 0 1  or 
Dll >> DL. For the latter we find in the lowest-order approximation that all coefficients A*, 
E* and C* are of the same order of magnitude. This shows that the fluctuation correction 
decreases for Dll >> DI as ( D J . / D I J ' / ~  without major changes of the functional form of 
A 4  for  D DL <( 1. The results of numerical calculations are shown in figure 1. 

3. Detection of fluctuatioos by a tracer order parameter 

Tbo interacting order parameters show a multitude of equilibrium configurations [7,29- 
321 and domain structures which are characterized by chiral domain walls [31-35]. It has 
been shown that small variations of one order parameter can lead to substantial variations 
of the other [7], whereby this effect is amplified if the two critical temperatures are not 
too different. The analytical treatment and the experimental observations are reviewed in 
detail in 171 with further discussions in [32,24,18,20-221. In the context of the present 
discussion it is sufficient to consider a system of two order parameters, Qt and Q2, with 
each subsystem described by the equations (1H3). The coefficients of the subsystem of 
Ql are dentoed by a subscript 1 and those of Qz with a subscript 2. The two subsystems 
are coupled via an additional energy 4B'Q:Q:. As the strain couples with each order 
parameter separately, we can treat each subsystem in exactly the same way as before. The 
uniform part of F becomes after elimination of the strain coordinates 

(11) Fo = ~ A I Q ;  + :&Q: + &4zQ: + :&e',+ iB'Q;Q: 
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Figure 1. The functional form of Ihe fluctuation correction in equation (6) for varying anisompy 
parameter d = Dn/Ds. Flucluation-induced fust-order msitions (x Q') are due to Ihe 
c t w a m  for small values of (1. The cuzvafllre and the fluauation correction disappear for 
highly anisotropic systems. 

where 51 = BI - 2 r f / K  and B' contains all coupling terms (direct and via strain [7]). 
This expression is similar to the case of a two-component order parameter except that all 
coefficients are indexed with respect to one of the two order parameters. Using the same 
formalism as in the case of one order parameter, one finds that the relevant fluchmtion- 
related part of the free energy is 

where 

U; = ( A i + D i k z ) + ( 5 ~ + 2 ~ 1 ) Q : ~ + B ' Q ~  (13) 

a; = (Az + D2k2) + (22 + 2$)Qg0 + B'Q:o (14) 

U; = 2B'QioQm. (15) 

The index 0 indicates again the value of the uniform part of the order parameter. We 
consider now a situation in which the order parameter Qlo # 0 is well below its transition 
temperature. The uniform part of the second order parameter shall be zero, i.e. we envisage 
a struchlral state with Qlo # 0 and Q a  = 0 which is phase I in the nomenclature 
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of 13. Cooling such a system often leads to structural phase transition to a phase IIl 
with Q t o  # 0, Q20 # 0. At temperatures slightly above this transition point we expect 
Dlk2 >> Dzk2 >> Az, so all thermodynamic fluctuations stem from QZ but not from 
Ql = Qlo. The fluctuations of Q2 will modify the value of Qso, however. because both 
order parameters are coupled. With Qu, = 0 we obtain after integration of equation (12) 
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a3 = O  (16) 

We now consider the behaviour at A2 > 0 (i.e. slightly above the transition point of Qz). 
The relevant part of 6 is then in order Qt: 

This term can induce some 'anomalons' behaviour in the temperature dependence of Qlo 
near the transition point of Q2. In the case of weak coupling the tan-'-term can be 
approximated by nJ2. In thii case we find two corrections for Qlo. The first correction 
is a term quadratic in Qlo and proportional to B'. This term is positive for competitive 
interaction and reduces the order parameter Qlo in the fluctuation regime. The second term 
is proportional to l Q l ~ [ ~  and is negative in the l i t  of weak coupling. This term will 
enhance Qlo, thereby partly compensating the effect of the first term. Although this partial 
compensation reduces the effect, the amplitude of AQlo will remain relatively large, i.e. in 
the same order as in the case of the uniform coupling. Note also that the numerical values 
for the various parameters can be determined in the low-temperature phase with Qlo # 0, 
Q u ,  # 0, so the fluctuation correction can be calibrated. 

4. Conclusion 

The size of the fluctuation-induced first-order step depends sensitively on the numerical 
values of Dll, DI and r .  Levanyuk et al [ 11 show that the relevant dimensionless parameter 
is 

T w 2  1 
4n K1 (A'GD3)1/2' 

gx-- 

This coefficient was roughly estimated to be a few lo-' in NIW1 and this was enough to 
get a rather large step. For other materials the strain coupling may be weaker (q ES 

for Qo = 1) [7] and the correlation constant D larger ( D k i  > 100A'To) [33,34]. The step 
is then found to be well below the experimental level of detection. 
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The fluctuation-induced stepwise behaviour may also not occur (within experimental 
resolution) in most improper ferroelastics with tricritical phase transitions 171. At 
temperatures slightly below the observed (i.e. renormalized) transition point, they form 
characteristic domain stlllctures. These domain structures consist of tweed and stripes 
(i.e. walls) perpendicular to two soft directions. The junctions between the walls define 
the thiid, hard direction along which no domain structures seem to exist [7]. Careful 
experimental observations give no evidence for fluctuations along the hard direction 
indicating Dl/Dg + 0. Fluctuation corrections become irrelevant for such materials. 
The same argument also applies (and even to a greater extent) to proper ferroelectric or 
ferroelastic transitions, since the long-range character of the interactions induces a singular 
correlation energy (E (Dk2 + D'(k/k)') for the dipolar case). This is roughly equivalent 
to an infinite Do in our calculations. 

We have also shown that in the case of coupled order parameters the fluctuations 
of one order parameter renormalize the value of the uniform part of the second order 
parameter. As it is experimentally easier to measure such uniform order parameters with 
a high degree of resolution rather than to measure fluctuations, it might be possible to 
quantify fluctuations using a second order parameter as a tracer. We hope that this idea 
may stimulate experimental work which could test the validity of our idea. 
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